

Electricity Block 2

Electronics

Knowledge Organizer

Key: [PHY] = National 5 Physics (Electricity) - [PE] = National 5 Practical Electronics - [BOTH] = appears in both

TABLE OF CONTENTS

Electricity Block 2	1
Electronics	1
Knowledge Organizer	1
Core electrical ideas (B2 focus)	2
1) Key quantities and units.....	2
2) Essential equations (B2)	2
3) Series and parallel recap (from Block 1 - Electricity B1)	2
Components you must recognise (B2 set)	2
4) Power connections and switches	2
5) Resistors, meters and output devices	3
6) Diodes, LEDs, capacitors and sensors.....	3
Potential dividers, LEDs and control circuits	4
7) Potential divider (core B2 idea)	4
8) Quick rules (IF...THEN...)	4
9) LED protective resistor (current limiting).....	4
10) Control circuits (using LDR/thermistor + divider + switch stage)	5
Switching, simulation, testing and soldering	6
12) Transistors and MOSFETs used as switches	6
13) Yenka (simulation) – quick purpose.....	6
14) Testing mindset (electronics)	6
15) Common mistakes (fault-finder box).....	7
16) Soldering and tools (definitions)	7

CORE ELECTRICAL IDEAS (B2 FOCUS)

1) KEY QUANTITIES AND UNITS

Idea	Definition	Unit	Course link
Electric current (I)	The rate of flow of electric charge in a circuit.	ampere (A)	[BOTH]
Electric charge (Q)	The amount of electric charge transferred.	coulomb (C)	[BOTH]
Potential difference / voltage (V)	The energy transferred per coulomb of charge between two points in a circuit.	volt (V)	[BOTH]
Resistance (R)	A measure of how much a component opposes the flow of current .	ohm (Ω)	[BOTH]

Note: Power and energy are covered in **Block 3**, so they are not included here.

2) ESSENTIAL EQUATIONS (B2)

Equation (SQA notation)	What it's for	Notes	Course link
$Q = I t$	Charge transferred in time t	t in seconds (s)	[BOTH]
$V = I R$	Ohm's law calculations	Valid for ohmic components (straight-line V-I graph)	[BOTH]
$V_2 = \frac{R_2}{R_1 + R_2} V_s$	Potential divider output voltage across R_2	R_1 and R_2 in series; V_2 is across R_2	[BOTH]
$\frac{V_1}{V_2} = \frac{R_1}{R_2}$	Divider relationship (ratio form)	Useful for comparing changes	[BOTH]

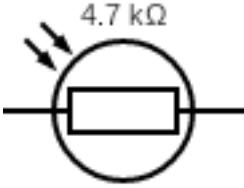
3) SERIES AND PARALLEL RECAP (FROM BLOCK 1 - ELECTRICITY B1)

Rule (B1 recap)	Summary	Course link
Series	Current same everywhere; voltages add.	[BOTH]
Parallel	Voltage same across branches; current splits.	[BOTH]

COMPONENTS YOU MUST RECOGNISE (B2 SET)

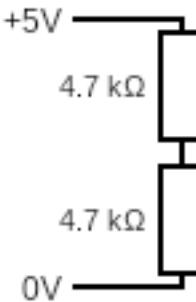
4) POWER CONNECTIONS AND SWITCHES

Component	Function (what it does)	Typical use / example	Symbol/diagram box	Course link
Voltage rails ($V+$ and $0V/-$)	The supply connections used to power a circuit (often shown as rails/lines on diagrams or breadboards).	Powering a breadboard or stripboard circuit	+5V —	[BOTH] (used heavily in [PE])
Switch (SPST)	Single pole single throw: ON/OFF switch that opens or closes one path.	Simple on/off control		[BOTH]


Switch (SPDT)	Single pole double throw: connects one input to one of two outputs .	Selecting between two paths (eg two control modes)		[BOTH] (used heavily in [PE])
---------------	---	--	--	----------------------------------

5) RESISTORS, METERS AND OUTPUT DEVICES

Component	Function (what it does)	Typical use / example	Symbol box	Course link
Resistor (fixed)	Limits current / creates a voltage drop.	Current limiting, potential dividers		[BOTH]
Variable resistor	Adjustable resistance.	Sensitivity/threshold control in a divider		[BOTH] (applications deeper in [PE])
Ammeter	Measures current (connected in series).	Measuring circuit current		[BOTH]
Voltmeter	Measures potential difference (connected in parallel).	Measuring voltage across a component		[BOTH]
Lamp	Converts electrical energy to light (and heat).	Indicator / lighting		[BOTH]
Motor	Converts electrical energy to kinetic energy.	Fans, mechanisms		[BOTH]
Loudspeaker / buzzer	Converts electrical energy to sound.	Sound output / alarms		[BOTH] (buzzer often used in [PE])


6) DIODES, LEDs, CAPACITORS AND SENSORS

Component	Definition / key idea	What to remember	Symbol box	Course link
Diode	Allows current to flow in one direction only .	Forward bias conducts; reverse bias blocks.		[BOTH]
LED (light emitting diode)	A diode that emits light when current flows forward.	Needs a protective resistor to limit current.		[BOTH]
Capacitor	Stores electric charge and energy.	Used for timing and smoothing (applications emphasised in [PE]).		[BOTH]

LDR (light dependent resistor)	Resistance depends on light level.	More light → lower resistance (typical).		[BOTH]
Thermistor (NTC)	Resistance depends on temperature.	Higher temperature → lower resistance (typical NTC).		[BOTH]

POTENTIAL DIVIDERS, LEDS AND CONTROL CIRCUITS

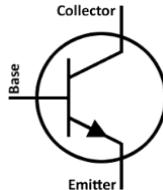
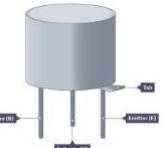
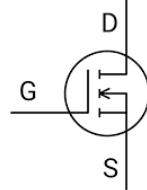
7) POTENTIAL DIVIDER (CORE B2 IDEA)

Topic	Student-ready notes	Diagram box	Course link
What is a potential divider?	Two (or more) resistors in series used to create an output voltage that is a fraction of the supply voltage.		
Naming	V_s = supply voltage. R_1 and R_2 are the series resistors. V_2 is the output voltage across R_2 .		
Why do we use it?	To make a variable voltage signal. Using an LDR/thermistor/variable resistor makes the output voltage change with light/temperature/setting.		[BOTH]
Divider equation	$V_2 = \frac{R_2}{R_1 + R_2} V_s$		
Key understanding	The resistor with the bigger share of total resistance gets the bigger share of the supply voltage.		

8) QUICK RULES (IF...THEN...)

Quick rule	Meaning in words	Course link
If R_2 increases → V_2 increases	A bigger R_2 gives a bigger fraction of V_s across R_2 .	[BOTH]
If R_1 increases → V_2 decreases	More of V_s is “used up” across R_1 , leaving less across R_2 .	[BOTH]
LDR: light level increases → resistance decreases	Bright light makes an LDR’s resistance drop.	[BOTH]
NTC thermistor: temperature increases → resistance decreases	Hotter thermistor → lower resistance (NTC).	[BOTH]

9) LED PROTECTIVE RESISTOR (CURRENT LIMITING)




Topic	Student-ready notes	Course link
Why an LED needs a resistor	LEDs don’t limit current well; without a resistor the current can be too large and damage the LED.	[BOTH]
Resistor calculation	$R = (V_s - V_{LED}) / I_{LED}$	

10) CONTROL CIRCUITS (USING LDR/THERMISTOR + DIVIDER + SWITCH STAGE)

Circuit type	What it means	What changes the output	Diagram box	Course link
High light control	Output turns ON at high light level .	LDR resistance changes → divider output voltage changes → switch stage changes output.		[PE]
Low light control	Output turns ON at low light level .	LDR resistance changes → divider output voltage changes → switch stage changes output.		[PE]
High temperature control	Output turns ON at high temperature .	Thermistor resistance changes → divider output voltage changes → switch stage changes output.		[PE]
Low temperature control	Output turns ON at low temperature .	Thermistor resistance changes → divider output voltage changes → switch stage changes output.		[PE]

SWITCHING, SIMULATION, TESTING AND SOLDERING

12) TRANSISTORS AND MOSFETS USED AS SWITCHES

Device	Definition	What to remember	Symbol box	Component	Course link
NPN transistor (BJT)	Semiconductor device that can act as an electronic switch.	A small base current controls a larger collector current . A silicon transistor typically begins to switch on when $V_{BE} \approx 0.7 \text{ V}$ (approx).			[BOTH] (skills/building focus is [PE])
n-channel enhancement MOSFET	Switch device controlled by gate voltage .	Very small gate current; turns on when the gate voltage is high enough (threshold behaviour).			[BOTH] (skills/building focus is [PE])

13) YENKA (SIMULATION) – QUICK PURPOSE

Yenka	<p>Test circuits safely before building</p> <p>Measure voltages/currents without risk</p> <p>Compare results to your calculations</p> <p>Practice fault finding using “normal” readings as a reference</p>	Course link: [PE]
-------	--	--------------------------

14) TESTING MINDSET (ELECTRONICS)

Test stage	What it means	Examples	Course link
Pre-power-up checks	Checks done before switching on to avoid damage.	Correct component values; correct orientation (diode/LED/capacitor/transistor); no loose wires; no short circuits; correct power connections; tidy wiring.	[PE]
Functionality tests	Tests done after switching on to confirm the circuit works.	Measure supply voltage; measure key node voltages; confirm output turns on/off in the correct conditions; compare to simulation; check current isn't excessive.	[PE]

15) COMMON MISTAKES (FAULT-FINDER BOX)

Common mistake	What you usually see	Quick fix	Course link
LED reversed	LED never lights	Flip LED orientation (check diode direction)	[PE]
No protective resistor	LED very bright then fails / gets hot	Add correct series resistor	[PE]
Measuring the wrong voltage	Numbers don't match expectation	Measure V2 across R2 (parallel connection)	[BOTH]
Wrong rail / no 0 V reference	Circuit behaves unpredictably / no output	Check V+ and 0 V rails are correct and continuous	[PE]
Short circuit / solder bridge	Supply drops / components heat / output stuck	Inspect, rework solder, remove bridge with solder sucker	[PE]
Transistor/MOSFET pins mixed up	Switch stage doesn't work	Re-check pinout (E/B/C or G/D/S) before powering	[PE]

16) SOLDERING AND TOOLS (DEFINITIONS)

Item	Definition / purpose	Safety / good practice	Course link
Track cutter	Tool used on stripboard to break a copper track so parts of the circuit are electrically separated.	Double-check the correct hole/track before cutting.	[PE]
Heat sink	A clip/metal part used to carry heat away from a component while soldering.	Protects heat-sensitive components; don't overheat parts.	[PE]
Solder sucker	Tool used to remove molten solder to fix mistakes or clear holes.	Use carefully; keep iron tip clean and tinned.	[PE]
Good solder joint	A clean, shiny joint that securely connects component and pad/track.	Right amount of solder; heat the joint not the solder; keep parts still while cooling.	[PE]